
Python是一种通用的脚本开发语言,比其他编程语言更加简单、易学,其面向对象特性甚至比Java、C#、.NET更加彻底,因此非常适合开发。Python在软件质量控制、开发效率、可移植性、组件集成、库支持等方面均具有明显的优势。
为什么要学python
行业发展 |
前景发展 |
就业前 |
人才需求量大 | 跟上人工智能时代的步伐 | 就业领域广,就业方向多! |
四种不同班型,满足不同人群需求
针对不同人群、不同需求开设不同班型,总有一款适合你
![]() | ![]() | ![]() | ![]() |
适学人群 零经验想入行,找一份好工作 1.专业不受限,岗位薪资高 2.没经验也能学,学完就能用 | 适学人群 相关开发工作,想掌握Python 1.想学习Python语言,工作更轻松 2.跟随时代发展,掌握行业新技术 | 适学人群 数据分析相关行业,想升职涨薪 1.构建完善的数据分析知识体系 2.数据驱动决策,提升业务能力 | 适学人群 想成为AI工程师,进行自我提升 1.突破职业瓶颈期,升职加薪 2.成为AI人才,“钱”途不可估量 |
python编程“简 单”“高 效”
![]() | ![]() |
| 简单易学: 逻辑简单,语法更贴近英语,水平英语即可入门初级 Python工程师, Python的“前景广阔”却又“简单易学”吸引了不少低龄开发者; 0元开源: 逻Python开放源代码,共享时代,让 python变得更简单; 标 准 库: Python拥有强大易用的标准库,让编程更方便 | 代码极短: 相同功能 Java VS Python代码数量对比,结果显而易见 一码多用: 可以用相同的代码处理不同规模的数据,达到用户的需求。 |
从基础课程到实战项目,所学即所用
课程内容设置与企业招聘需求无缝贴合
| 线下课 | Python语言基础 | 商业数据分析 |
●初识Python语言 Python语言概述和环境安装丨变量、数据类型和进制丨运算符和分支结构丨循环结构入门丨循环结构的应用 ●常用数据结构和函数 字符串丨列表的应用丨元组和集合丨字典类型的应用丨函数使用入门 ●函数和面向对象编程 包和模块丨函数的高级用法丨装饰器和生成器丨面向对象编程基础丨面向对象编程进阶 ●Python网络数据采集 爬虫概述和页面抓取丨解析页面的方式丨爬取数据的持久化丨Cookie和商业IP代理丨获取页面动态内容丨Selenium应用详解丨提升爬虫工作效率丨破解验证码丨爬虫框架Scrapy | ●数据分析概述和Excel的应用 数据分析和数据分析师概述丨指标和指标体系建设丨Excel的安装和快速上手丨Excel中的函数和公式计算丨Excel透视表、透视图和商业数据看板 ●关系型数据库和SQL 数据库概述和MySQL的安装使用丨表关系和SQL的应用丨SQL数据查询详解丨窗口函数和业务场景下的数据查询丨Python程序接入MySQL数据库 ●商业智能(BI)工具 MySQL其他相关知识丨从Excel到Power BI丨Power BI中的数据清洗和分析模型丨Power BI中的数据可视化和报表制作丨Power BI项目实操丨认识和使用Tableau丨认识和使用fineBI丨数据思维和分析模型 ●Python数据分析 Python数据分析工具介绍丨使用NumPy实现批量数据处理丨线性代数和NumPy的linalg模块丨使用Pandas进行数据分析 | |
| 机器学习算法 | 项目实战和就业指导 | |
●机器学习的数学基础 线性代数丨微积分丨概率论丨统计学丨信息论 ●机器学习算法 机器学习概述和kNN算法丨回归算法丨逻辑回归丨朴素贝叶斯丨决策树丨支持向量机丨聚类算法和轮廓系数丨集成算法丨特征工程和评价指标丨机器学习项目实战 ●深度学习和神经网络 推荐系统丨深度学习和tensorflow入门丨tensorflow的应用丨卷积神经网络 ●数据仓库和大数据挖掘 Hadoop生态圈丨ETL工具丨数据仓库丨Hive丨Spark概述 | ●零售/电商行业数据分析项目实战 为期5天的项目实战 ●金融风险信用评估项目实战 为期5天的项目实战 ●就业指导和模拟面试 就业期的技术和心理准备丨如何制作一份优质的简历丨面试流程和注意事项丨一对一模拟模式 | |
| 线上课程 | 数学基础 | 经典机器学习 |
●高等数学 什么是函数丨极限的定义丨无穷小与无穷大丨连续性与导数丨偏导数丨方向导数丨微积分的基本思想丨定积分原理丨牛顿-莱布尼茨公式丨泰勒公式及应用丨拉格朗日优化问题 ●线性代数 矩阵观点的由来-方程可解性丨矩阵的逆丨行列式丨矩阵的向量空间与秩丨为什么要做矩阵分解丨特征值与特征向量丨基于特征值的矩阵分解丨SVD如何进行矩阵分解丨SVD在推荐系统中的应用 ●概率论 概率与频率-古典学派丨条件概率与文氏图丨离散随机变量丨连续随机变量丨什么是随机抽样丨从贝叶斯学派到贝叶斯推断丨多维随机变量丨期望及其求法丨大数定律与中心极限定律告诉我们什么丨极大似然估计丨统计推断的做了哪些事情丨z分布与t分布丨f分布丨卡方分布丨使用卡方分布检测相关性丨f分布与回归分析 | ●回归模型 什么是回归丨多元回归的定义丨解析求解-最小二乘法丨梯度下降与迭代求解原理丨手撸梯度下降丨梯度下降的改进丨模型的评估方法-r2评分丨非线性问题如何解决-泰勒级数丨回归问题的更一般表达丨模型复杂度与拟合丨如何解决过拟合与欠拟合丨岭回归与lasso回归丨sklearn中的线性回归丨sklearn中的岭回归与lasso回归丨AR模型在回归中的应用丨回归项目(kaggle旧金山犯罪率预测) ●分类方法 分类问题的定义丨从回归到分类-逻辑函数的作用丨贝叶斯推断与似然函数丨使用最大似然进行参数估计丨逻辑斯蒂损失定义丨逻辑斯蒂梯度下降推导丨手撸逻辑斯蒂丨使用逻辑斯蒂进行手写体识别丨文本分类问题与NLP丨复习使用朴素贝叶斯框架的推断丨使用朴素贝叶斯进行文本分类的原理丨朴素贝叶斯进行文本分类的实例丨sklearn中朴素贝叶斯实现丨高斯贝叶斯及其应用丨项目实战(新闻分类)丨什么是决策树丨信息如何度量丨信息增益表达了什么?丨使用ID3算法构建决策树丨C4.5与CART树使用的度量方法丨CART树如何进行回归丨分类方法的最优化思考丨支持向量与最优分类超平面丨svm模型的构建丨svm对偶问题的转换丨smo算法与对偶问题的求解丨核函数如何解决非线性问题丨综合项目(使用svm进行车牌识别) ●聚类 数据的潜在结构与聚类丨距离的度量标准丨KMeans原理丨KMeans实现丨聚类算法的评估-轮廓系数丨基于密度的聚类丨层次聚类丨综合项目 ●集成学习 集成学习概述-弱分类与强分类丨boosting与bagging丨adaboost概述丨adaboost原理丨adaboost推导与计算丨bagging抽样的若干问题丨使用bagging与决策树构建随机森林丨随机森林为什么有效?丨使用boosting与决策树构建提升树丨什么是梯度提升丨GBDT的原理与推导丨xgboost的原理与推导丨lightgbm的进一步改进丨综合项目 | |
| 深度学习 | 强化学习 | |
| ●深度前馈网络 什么是神经网络丨神经网络能进行学习的原因-从XOR问题入手丨正向传播的计算丨基于梯度的学习丨反向传播的计算丨梯度消失与梯度爆炸-激活函数的选择丨控制模型复杂度-神经网络的正则化丨注意力机制 ●机器学习算法 机器学习概述和kNN算法丨回归算法丨逻辑回归丨朴素贝叶斯丨决策树丨支持向量机丨聚类算法和轮廓系数丨集成算法丨特征工程和评价指标丨机器学习项目实战 ●卷积网络 计算机如何理解图片丨卷积运算丨池化丨LeNet-一个完整的神经网络结构丨卷积神经网络的结构化输出与数据类型丨VGG网络-向深度迈进丨RESNET-解决退化问题作出的努力丨yolo-一次扫描完成多目标检测丨其他流行的网络结构介绍 ●循环网络 综合项目丨时间序列处理的发展和演进丨计算图及其展开丨RNN网络结构丨RNN如何处理时间序列丨双向RNN丨RNN为什么起作用?丨递归与深度循环丨改进RNN的短视-LSTM丨使用LSTM完成诗歌生成器丨综合项目 ●置信网络 编码与解码丨什么是受限玻尔兹曼机丨受限玻尔兹曼机推导丨构建DBN丨使用DBN进行推荐与编码丨综合项目-广告点击优化 | ●理论基础 什么是强化学习丨多臂赌博机丨MDP过程丨动态规划丨策略梯度原理 ●模型实现 什么是Q-Learning丨Q-Learning的更新丨Q-Learning的实现丨什么是Sarsa丨Sarsa的原理与实现丨什么是DQN丨DQN如何更新丨DQN的实现丨什么是Actor Critic丨Actor Ctitic原理与实现 |
python培训企业实战项目
| 项目一:东方财富智能云系统 | 项目二:爬虫集群系统 | 项目三:语音识别 |
| 项目简介 | ||
| 在线金融交易系统,通过实时获取上证、深证所提供的证券金融数据,进行智能分析、显示,较终按照用户制定的交易策略进行虚拟交易。 | 通过对海量招聘数据挖掘、分析,帮助求职者更快更好的找到适合的工作。可以按照城市、薪资、行业、其他技能关键字等进行合理分析,较终得出有价值的结果。 | 采用Google的TensorFlow人工智能学习系统建立的智能语音识别系统。通过学习该项目,希望学员早日走入人工智能的大门。 |
| 技能掌握 | ||
1、Python核心技术,网络编程技术。 2、WEB前端开发技术:HTML5、CSS、Javascript、JQuery库、网页设计技能。 3、多种网络协议及数据格式,如:HTTP协议、JSCON。 4、数据库技术:MySql、MongoDB、Redis。 5、Django Web框架技术 6、Python SMTP smtplib、email模块 7、Python项目部署、测试技术 8、软件工程管理技能、Git、Pydoc等工具使用 | 1、熟练使用Python urllib requests等模块 2、掌握Python网络编程、多线程编程技术 3、掌握XML解析、XPath 语法,以及Python的re、json模块 4、掌握网络协议,如HTTP协议 5、理解分布式爬虫原理及实现 6、熟练使用Scrapy框架,及scrapy-redis分布式框架 | 1、掌握采用Tornado框架实现高并发请求技能。 2、掌握海量数据分析技术。 3、掌握语音识别技术原理、实现方法。 4、掌握采用Python作为开发语言的人工智能框架TensorFlow。 5、掌握第三方SDK的使用,如微软语音、百度语音的Python SDK。 6、掌握数据的云端存取访问技术 7、掌握Python图形编程技术。 |
Python培训机构推荐十家名单:(排名不分先后) 1.达内教育 优势:达内教育成立于2002年,拥有20年的IT职业教育经验,累计培养了112万学员,课程体系全面,涵盖Python核心编程、人工智能、数据分析等领域。其教学模式注重实战,采用“因材施教、分级培优”的方式,提供1v1督学和跟踪式学习服务,帮助学员快速适应市场需求。 2.博为峰教育 优势:博为峰专注于软件测试、Python、Java等IT技术培训,拥有18年经验,课程内容紧跟行业技术发展,注重实战能力培养。其教学模式包括混合式教学(面授+网课)、个性化教学服务以及与多家企业的合作,为学员提供丰富的实习和就业机会。 3.千锋教育 优势:千锋教育以H5、HTML5、全栈开发等课程闻名,同时提供Python编程培训。其课程设计注重实践,提供丰富的项目经验,帮助学员掌握核心技能,并通过实战提升就业竞争力。 4.北大青鸟 优势:北大青鸟是国内知名的IT培训机构,提供Python编程培训课程,课程内容涵盖从基础到高级的完整学习路径。其教学模式注重理论与实践结合,帮助学员逐步掌握Python编程技能。 5.汇智动力 优势:汇智动力专注于IT技能培训,提供Python编程课程。其课程设计注重实战,帮助学员快速掌握Python开发技能,并通过项目实践提升实际操作能力。 6.完美动力 优势:完美动力以高质量的教学和严格的管理著称,其Python课程注重理论与实践结合,帮助学员掌握核心技能,并通过丰富的项目经验提升就业竞争力。 7.尚硅谷 优势:尚硅谷专注于Java和Python培训,其课程内容丰富,注重实战能力培养。其教学模式包括小班授课和在线答疑,帮助学员快速掌握Python开发技能。 8.信盈达教育 优势:信盈达教育提供Python编程培训课程,课程内容涵盖从基础到高级的完整学习路径。其教学模式注重实战能力培养,并通过与企业的合作为学员提供实习和就业机会。 9.东方瑞通 优势:东方瑞通提供Python编程培训课程,课程内容紧跟行业技术发展,注重实战能力培养。其教学模式包括混合式教学和个性化服务,帮助学员快速适应职场需求。 10.源码时代IT教育 优势:源码时代IT教育提供Python编程培训课程,课程内容涵盖从基础到高级的完整学习路径。其教学模式注重实战能力培养,并通过丰富的项目经验提升学员的就业竞争力。 注:以上内容来源与网络,仅供参考,排名不分先后 Python的培训机构并没有什么排名名单,全部都是网上随便编排的排名,并没有什么作用。 |
变量的规则
变量的规则需要遵守如下几点,具体如下:(1)变量只能是字母,数字,和下划线。(2)变量名的第一个字符不能是数字。(3)如果变量名称是多个字符串,建议使用驼峰式(就是第二个字符的首字母大写)的命名规则,如mySchool、isBoy、myTeacher、myNameIs。(4)定义变量名称尽量的通俗易懂,一言以蔽之。如名字就用name、学校就用school。
数据可视化
数据可视化是Python数据分析的重要环节,我学习了如何使用Python的Matplotlib、Seaborn、Plotly等库进行数据可视化,以便更好地展示数据和分析结果。
并非只有编程人员使用Python
Python 并非只适合开发技术人员使用,在金融领域很多从业人员也用 Python 来进行金融量化。办公白领如果会使用 Python 可以很方便来批量操作 Excel 、Word 、PDF,让你成为真正的时间管理大师。遗憾的是,Python 目前还不能用来炒菜做饭。
基本统计量分析
基本统计量分析是指对数据进行均值、中位数、众数、方差、标准差等的计算和分析。基本统计量分析的方法可以使用Pandas库中的describe()函数。
异常处理
异常是程序运行过程中出现的错误或意外情况。如果异常没有被妥善处理,程序可能会崩溃或产生难以预料的结果。Python 提供了 try/except 语句来捕获和处理异常,提高程序的健壮性。我们把可能引发异常的代码放在 try 块中,在 except 块中编写异常处理逻辑。当 try 块中的代码引发了指定类型的异常时,程序会跳转到对应的 except 块执行异常处理代码。Python 还支持 else 子句和 finally 子句,用于在没有异常发生时执行代码,以及无论是否发生异常都要执行的清理代码。
Python仍然流行吗
根据最新的StackOverflow调查2021,Python在最常用的编程语言中排名第三。考虑到选择的数量,该调查显示Python是一种非常受欢迎的语言。Python受欢迎的另一个迹象是它如何在数据科学生态系统中占据主导。到目前为止,它是数据科学从业者和研究人员中最受欢迎的编程语言。几乎每一个新工具都会首先支持Python。当然,也有其他的数据科学替代品。然而,Python在该领域无处不在。
扫描二维码免费领取试听课程

登录51乐学网
注册51乐学网